
Git-based CTF: A Simple and Effective Approach to Organizing
In-Course Attack-and-Defense Security Competition

SeongIl Wi
KAIST

Jaeseung Choi
KAIST

Sang Kil Cha
KAIST

Abstract
Security competitions, a.k.a., CTFs, have never been

easy to run for a classroom teacher despite there being
considerable body of research on these events. It is often
frustrating for teachers to organize and administer such
an event as doing so requires significant time and human
resource investments. Creating new problems for every
CTF is challenging as there are many factors to consider
while developing a CTF problem such as the difficulty
level of each challenge. In this paper, we propose a sim-
ple, but effective approach that we refer to as Git-based
CTF to hosting an in-class attack-and-defense CTF con-
test while minimizing the operational costs for teachers.
We share our experience and lessons learned by organiz-
ing a Git-based CTF in KAIST.

1 Introduction

Capture The Flag (CTF), a competition that provides a
legal way for the participants to demonstrate hands-on
hacking skills, is gaining its momentum as a pedagogical
tool in security education due to its substantial learning
outcomes [7, 14]. Since 2013, PicoCTF [11] has been
encouraging high school students to study computer sys-
tems in an adversarial perspective. The University of
Maryland recently ran a MOOC (Massive Online Open
Courseware) course [31], which aims to teach students
how to build a secure software system [25].

Unfortunately, however, organizing an in-course CTF
competition has never been an easy task for teachers due
to the following practical challenges.

C1 (Interactivity Challenge): To be realistic and educa-
tionally effective, CTF events should involve con-
tinuous interaction between attackers and defend-
ers. However, many public CTF frameworks do not
support interactivity in their designs.

C2 (Configuration Challenge): Configuring a CTF en-
vironment requires a significant amount of time and

considerable skills. Especially, less experienced ed-
ucators such as high school teachers can suffer from
this issue.

C3 (Monitoring Challenge): There should be someone,
potentially a teaching assistant, who can continu-
ally monitor and administer the CTF while it is run-
ning. Typically, a CTF lasts for days, and admin-
istering the entire event requires substantial human
resources.

C4 (Contents Creation Challenge): Teachers need to in-
vent new problems every time they run a competi-
tion as it can be trivial for students to reuse the ex-
ploitation scripts or flags used in previous competi-
tions. Note there are typically ten to fifty problems
in a CTF depending on the size of the competition.
Furthermore, teachers should consider the difficulty
level as well as the diversity of each problem when
they create a new one.

Although there is surging research interest in tackling
the above mentioned challenges, we remain unaware of
any practical solution that meets all of the requirements.
Table 1 presents a comparison between our approach and
other existing CTF platforms. For instance, there are sev-
eral CTF frameworks [5, 13, 23, 29] that aim to ease the
configuration challenge (C2), but none of the works ad-
dressed neither C3 nor C4. AutoCTF [17] specifically
tackles C4 by employing an automatic bug injection sys-
tem called LAVA [16]. However, their approach does not
consider the interactivity challenge (C1), and the vulner-
ability pattern is fixed across problems.

Notably, BIBIFI [25] mitigates the contents creation
challenge (C4) by employing a so-called “build-it” phase
during a competition. It divides participants into two
types: (1) build-it players; who write an application
given a specification written by the teacher, and (2)
break-it players; who try to attack the newly created ap-
plications. Therefore, the teacher’s load is reduced from

1



creating dozens of CTF problems to simply writing a
specification for an application. However, their design
choice does not allow students to engage in real-time at-
tack and defense exercises (C1). Furthermore, as noted
by the authors, the teacher should manually check every
submitted fix to determine whether or not it addresses a
single defect at the end of the competition. That is, BIB-
IFI is also associated with a monitoring challenge (C3).

In this paper, we propose a simple and powerful ped-
agogical framework that we call Git-based CTF with
which to organize an in-course attack-and-defense CTF
competition. Our approach is mainly inspired by the
design of BIBIFI, but it enables regular teachers easily
to host an attack-and-defense CTF as class homework
by minimizing the configuration and monitoring burden.
Furthermore, the content creation in Git-based CTF is at
least as easy as it is with BIBIFI. That is, Git-based CTF
tackles each of the aforementioned challenges (C1–C4).

First, students of Git-based CTF play the role of both
attacker and defender unlike in BIBIFI. Therefore, at-
tackers and defenders can interact with each other in
real time as in typical attack-and-defense CTFs. Given
that real-time attack and defense exercises can be over-
whelming to students who have less experience in secu-
rity [4, 24], we devise a means of providing direct guid-
ance to novices for a subset of the problems in Git-based
CTF (§3.2).

Second, setting up a competition environment in Git-
based CTF is inexpensive and fully distributed. Students
use Docker containers to run the service applications of
their opponents and to develop an exploit. Although they
work on their own machines, they can communicate with
each other through Git and GitHub [2]. Specifically, an
attack in Git-based CTF involves submitting an issue to
the target team’s repository. The content of the issue is
encrypted and only visible to the target team and the in-
structor(s). Since the entire attack history is stored in
GitHub, the instructors can later fetch the history and
verify the submitted attacks on their own machines.

Third, Git-based CTF significantly reduces the mon-
itoring effort of the instructors. Unlike BIBIFI, we ask
every student to inject vulnerabilities into a network ap-
plication they prepared. By having the injection phase,
we can easily check which of the injected vulnerabilities
can be exploited by an attack: we can simply run the at-
tack against both a patched and a vulnerable version of
the target application. As a result, teachers can run the
CTF for weeks as in a typical class homework assign-
ment without monitoring the CTF servers.

Finally, Git-based CTF shifts the contents creation
burden to students as in BIBIFI [25]. However, students
in Git-based CTF are naturally motivated to check the
quality of the fixes of other teams in order to break them
again, as each student experiences the role of both an

Table 1: Comparison between Git-based CTF and other
existing CTF frameworks.

Framework Name C1 C2 C3 C4

Git-based CTF (ours) 3 3 3 3

BIBIFI [25] 7 3 7 3

iCTF [30, 32] 3 3 7 7

NIZKCTF [20] 7 7 3 7

PicoCTF [8, 11] 7 7 7 3

InCTF [24] 3 7 7 7

CTFd [13] 7 3 7 7

SecGen [27] 7 3 7 3

Catalyst [29] 3 3 7 7

Backman [4] 3 3 7 7

CCTF [21, 22] 7 7 7 7

CyTrOne [5, 23] 7 3 7 7

AutoCTF [17] 7 7 7 3

VM-based Framework [12] 7 3 3 7

KYPO [34] 7 3 7 7

attacker and a defender. We also note that injected vul-
nerabilities from students typically reflect the skills and
experiences of each of them. Therefore, the difficulty
levels of CTF challenges are likely to be well-distributed
(§4).

We ran a preliminary in-course CTF with the proposed
idea as part of a course activity during the Spring 2018
semester at KAIST in Korea. We ran the CTF for about
two weeks, and found that the administrative cost for
running the event is significantly lower than that associ-
ated with a classic attack-and-defense CTF that we ran in
2017 for the same course. We observed various kinds of
vulnerabilities with a range of difficulty levels introduced
by students. The students discovered 14 unintended vul-
nerabilities during the competition. Such unintended
vulnerabilities provided the motivation for highly expe-
rienced students to become more engaged in the CTF.

Overall, this paper makes the following contributions.

1. We summarize the practical challenges in hosting
in-course attack-and-defense CTFs.

2. We present a novel way to organize an attack-and-
defense CTF as a class homework or an activity.

3. We discuss several lessons learned from organizing
a Git-based CTF.

4. We make the source code of our CTF framework
public [28], which includes a series of scripts to or-
ganize and play Git-based CTF.

2



2 Background

CTF is a competition that involves capturing a flag as a
proof of solving challenges. There are mainly two cat-
egories: (1) jeopardy style and (2) attack-and-defense
style. Jeopardy-style CTFs consist of a set of problems
to solve. For each problem, there is a specifically con-
figured server that stores a flag, which is a secret string
used by participants as a proof of successfully attacking
the corresponding server. Jeopardy-style CTFs typically
do not involve any defensive exercises: they are mostly
attack-only. On the other hand, in an attack-and-defense
CTF, each participant manages a server that runs a set of
service applications. The participants should find vul-
nerabilities in the applications in order to obtain flags
from the other servers, and should patch their own ap-
plications to protect their flags. Since every team should
be connected to each other, it is more difficult to host an
attack-and-defense CTF than a jeopardy-style one. CTFs
provide participants a chance to exercise hands-on secu-
rity skills, and its pedagogical value is gaining more at-
tention recently [9, 10, 11, 14, 15, 30].

Table 1 presents the comparison between existing CTF
platforms with regards to the challenges we addressed
in §1. Note that CTF platforms that focus on C1 tend
to miss C3, which shows the difficulty of administering
attack-and-defense CTFs over a long period as in a reg-
ular class homework or project. This paper presents a
novel way to host an attack-and-defense-style CTF as a
course activity while not suffering from such challenges.

GitHub [2] has become an essential platform for man-
aging open-source software. Zagalsky et al. [36] show
GitHub’s collaborative features such as issue tracker and
pull requests can benefit software education. There have
been several attempts in security education that leverage
GitHub in a CTF competition [20, 25]. Git-based CTF
follows the similar approach, but we use PGP encryp-
tion [19] to securely store exploits.

3 Git-based CTF

In this section, we describe the design of Git-based CTF.
Git-based CTF consists of three phases: (1) preparation,
(2) injection and (3) exercise. Figure 1 illustrates the
overall flow of Git-based CTF. First, each team should
prepare a network service application (§3.1). Next, play-
ers inject vulnerabilities into their team’s service (§3.2).
Lastly, players analyze other teams’ services and exploit
them in the exercise phase (§3.3). In each phase, we ad-
equately utilize Git [1] and GitHub [2] to fulfill the goal
of minimizing instructors’ manual effort.

Configuration. To setup a Git-based CTF, instructors
first need to create and assign one GitHub repository

for each team. The instructors then create a PGP key
pair [19] and securely share the private key among them.
Each team maintains their service application in the as-
signed repository. This repository also serves as an inter-
face in which attacks are submitted. Each team should
create their own PGP key pair. All the public keys along
with the instructor’s public key will be shared across the
teams. The instructors can run a script to fetch the sub-
mitted attacks and evaluate them automatically (§3.3).
Note that instructors in Git-based CTF do not have to
prepare a separate server to run a CTF.

3.1 Preparation Phase
In this step, each team is required to prepare a network
service application that binds to a port number specified
by the instructor. When the application is running, a
client should be able to connect to the service through
a network. Each team prepares their own application in
one of the following two scenarios.

Hands-on Development. In this scenario, we follow
the same strategy as in the build-it phase of BIB-
IFI [25]. We first provide a specification about the
service, and each team develops their own service
according to the specification. We also prepare a
set of test cases that the service application should
pass in order to prove its functionality. With this
approach, students have a chance to exercise secure
coding practices.

Importing Open-source Software. Instead of making
every team develop the same kind of application, in-
structors can give freedom to each team to import an
arbitrary open-source software of their choice. Note
that teams can take a non-network application and
convert it to a network service if they want. Also,
the instructors may encourage students to investi-
gate the imported source code and check whether
their service application is really safe to run. In
this scenario, students can learn source code audit-
ing methods and skills.

When a service application is ready, each team pushes
their code to their own GitHub repository. In this phase,
each repository is private and only visible to the team
members and the instructors. By the end of this phase,
the repository should contain a Dockerfile that will au-
tomatically install packages required by the application
as well as a Makefile that automatically builds the ap-
plication. The resulting binary should successfully run
within a Docker container configured with the provided
Dockerfile. To support easier development, we pro-
vide a template Dockerfile, which is built upon a De-
bian base image. It takes a flag.txt file as input, which

3



3. Exercise Phase1. Preparation Phase

Container Container

2. Injection Phase

Vulnerable
Program

Container

Vulnerable
Program

Container

Vulnerable
Program

ProgramProgram

(2) Find

Program

Container
Importing
Software

Hands-on
Development

 

Exploit

Attacker

Service Repo. Service Repo. Service Repo.
Cloned Service
Repo.

(1) Clone
(2) Find

(3) Submit Exploit

(3) Submit Exploit

(4) Patch

Intended Vulnerability

Unintended Vulnerability

Private RepositoryPublic Repository Encrypted Data

Exercise with Intended Vulnerability

Exercise with Unintended Vulnerability

Figure 1: Git-based CTF workflow.

contains a random string generated by the instructors,
and copies the flag file into /var/ctf/ directory inside
the container. Since the instructors may want to confirm
that each repository successfully builds the service appli-
cation, we provide a simple script [28] that can automati-
cally check the health of each repository by running a se-
ries of commands such as git clone, docker build

and make.
We note that the applications prepared in this phase

may contain unintended vulnerabilities. Such vulnera-
bilities can exist regardless of whether the students de-
veloped the services by themselves, or they imported an
open-source software. Although open-source software is
likely to have less vulnerabilities than the software de-
veloped by the students within a short period, they can
still be vulnerable to zero-day attacks. In the rest of the
paper, we will refer to such vulnerabilities as unintended
vulnerabilities.

3.2 Injection Phase

Now that all the teams have prepared an application in
their own repository, they inject N distinct vulnerabili-
ties into their service application1. Here, N is chosen by
the instructor depending on the classroom circumstances,
e.g., based on the number of students. Each team creates
N separate branches in their service repository, and in-

1For simplicity, we assume here that a single vulnerability is enough
to hijack the control flow of the target service. In reality, however,
students may inject a series of related vulnerabilities altogether. For
instance, an exploit may involve a memory leak vulnerability to bypass
ASLR, as well as a buffer overflow vulnerability to initiate a ROP.

troduces a vulnerability per each branch. We will refer
to these injected vulnerabilities as intended vulnerabili-
ties, to distinguish them from unintended vulnerabilities
that may exist even before the injection.

After injecting vulnerabilities into the application,
each team should create an exploit for each of the vul-
nerabilities in order to prove their exploitability. An ex-
ploit in Git-based CTF is a program that runs in a Docker
container, which takes in a target IP address as input,
and prints out the content of the flag stored in the ser-
vice Docker container to the standard output assuming
that the target service is running at the given IP address.
An exploit as well as the corresponding Dockerfile is
signed and encrypted with PGP keys [19] before they get
pushed to the repository. To make the exploit content
only visible to the instructors, it should be encrypted with
the public key of the instructors. Note that exploits cre-
ated in this phase can be considered as a solution for each
intended vulnerability, and other team members should
not be able to access them when the repository becomes
public in the next phase.

Automated Exploit Verification. At this point, we can
check the exploitability of each intended vulnerability by
simply running the corresponding exploit against the ser-
vice application. We first launch the vulnerable applica-
tion within a Docker container with a randomly gener-
ated flag.txt file. We then run another Docker con-
tainer that runs the corresponding exploit, and verify
whether it returns a valid flag string, i.e., the random
string stored in the flag file. If and only if the exploit is
successful, it will show the valid flag string. The same

4



automated technique is used to evaluate submitted at-
tacks (§3.3).

Contents Creation. In the injection phase, instructors
obtain vulnerable services that can be used as a CTF
problem for free. Furthermore, attacks against such
problems can be automatically checked and evaluated.
One potential concern, however, is whether we can ob-
tain a set of challenges that are diverse and interesting
enough. According to our experimental study (§4), we
found that students tend to inject vulnerabilities based
on their skill level. As a result, CTF challenges produced
by students were diverse in terms of both vulnerability
kinds and difficulty levels.

Low Barriers to Entry. Since commits in each branch
show what changes had made to the original program, it
will serve as a useful hint for CTF beginners in the next
phase, where players have to analyze and exploit vulner-
abilities of the applications. In Git-based CTF, even an
unexperienced student can easily spot a vulnerable point
of a target program by simply invoking diff. We note
that this is one of the key aspect of Git-based CTF be-
cause we assume that students can have various different
backgrounds, and an attack-and-defense CTF should be
playable for them too.

3.3 Exercise Phase
The primary goal of the final phase is to exercise attacks
and defenses. Each team analyzes other teams’ service
applications, finds vulnerabilities, and exploits them. In
this phase, we make all the service repositories public so
that the participants can access the source code. There
are two ways to play the competition: (1) analyzing the
commits made in the injection phase and figuring out the
intended vulnerabilities, or (2) seeking for unintended
vulnerabilities in the service. As we discussed earlier,
CTF novices can choose to follow the first way by con-
sulting the commits made for each vulnerable branch to
spot vulnerable points.

When players identify a vulnerability from one of the
services run by other teams, they should write an exploit
for it. Recall from §3.2, an exploit in Git-based CTF
is a program that runs in a Docker container that can
connect to a victim service running in another Docker
container. An exploit should be able to retrieve a flag
stored in the container. For exploits in this phase, every
player should encrypt their exploits with public keys of
both the instructors and the team that maintains the vul-
nerable service. Players will create GitHub issues in tar-
get application’s repository to submit their encrypted ex-
ploits. We provide each student a simple command-line
tool that helps create an issue in a target repository. We

also provide instructors a command-line tool for fetching
the submitted issues and verifying their exploitability as
in the injection phase.

Defense in Git-based CTF. To defend against attacks
from others, each team can fix unintended vulnerabil-
ities in their own service application. Since intended
vulnerabilities already have a fix, i.e., the original code,
the defense in Git-based CTF should always be about
unintended vulnerabilities, but not about intended ones.
Whenever an unintended vulnerability is found in a ser-
vice, the team that owns the application can fix it and
push the modification to the master branch of the repos-
itory. Every patch can be monitored by other teams be-
cause the repository is public. This means if a patch is
wrong or incomplete, other teams can attack the same un-
intended vulnerability again. We also periodically award
points to participants who have successfully exploited an
unintended vulnerability until it is fixed by the defend-
ing team. Therefore, every participant should monitor
patches unlike BIBIFI [25] where each fix should be ver-
ified by the instructor.

Automated Scoring System. Our design of Git-based
CTF enables automated scoring. Suppose students have
injected k intended vulnerabilities v1,v2, · · · ,vk into a
program p, and let pi be a modified version of the pro-
gram, which has only one intended vulnerability vi. To
evaluate an attack against intended vulnerabilities, we
run the attack against p1, p2, · · · , pk as well as the origi-
nal program p. We then observe in which version the at-
tack returns a valid flag. If the exploit works only on one
of the modified programs, we can immediately identify
which vulnerability has been attacked by the exploit. If
the exploit works only on the original program, we con-
sider it as an attack against an unintended vulnerability.
Whenever there is an attack for an unintended vulnerabil-
ity, we deduct points of the victim for every M minutes,
where M is a configurable parameter. This is to encour-
age students to patch their programs. In order to preserve
the interactivity between attackers and defenders, we do
not differentiate between two distinct unintended vulner-
abilities of the same application unless one of the vulner-
abilities is fixed in the master branch. For every attack,
i.e., a GitHub issue, we always fetch the latest version
committed before the attack, and consider the version of
the program as p. This way, participants can experience
real-time interactions as both an attacker and a defender
as in typical attack-and-defense CTFs.

We note that Git-based CTF has the characteristics of
both jeopardy and attack-and-defense style: it is similar
to jeopardy-style CTFs in terms of the attack-only nature
of intended vulnerabilities, but it is also an attack-and-
defense CTF with respect to unintended vulnerabilities.

5



Type Confusion
3%

Command Injection
25%

Logic Flaw
43%

Buffer Overflow
14%

Buffer Overread
3%

Use-After-Free
4%

Integer Overflow
4%

Format String Bug
4%

Figure 2: The distribution of different kinds of injected
vulnerabilities.

Scoreboard. Git-based CTF is a fully distributed CTF
framework, which does not have a dedicated web server
for displaying scores. Instead, students as well as instruc-
tors can run our script [28] to see the current scoreboard.
The script fetches the attack log and automatically popu-
lates an HTML file that shows a graph representing score
over time for each team as in typical CTF events.

4 Evaluation

We ran a Git-based CTF in 2018 as part of a graduate-
level course in KAIST, Korea [18]. Most students of the
course were information security major who have var-
ious different backgrounds including cryptography and
mathematics. Among 21 students, 11 of them had no ex-
perience in a security competition. We first divided them
into 6 teams and asked them to develop a simple secure
messaging application in about three weeks. We gave
a precise specification that describes the behavior of the
messaging application, and we forced them to use either
C or C++ in order to increase the chance of having more
interesting vulnerabilities. After the first phase, we asked
each student to inject at least one vulnerability into their
own application. In total, the students introduced 28 vul-
nerabilities in the 6 distinct applications developed in the
previous phase. Although it was a preliminary event, we
obtained several meaningful lessons and results from our
postmortem analysis. We enumerate them in the rest of
this section.

Diversity of Injected Vulnerabilities. We observed
various types of injected vulnerabilities including logic
errors and classic memory corruption errors. The most

6

1

1

3

1 1

2

2

4

Unexperienced

Experienced

Vulnerability Type
Cha

ine
d Vu

lne
rab

iliti
es

Lo
gic

 Fl
aw

Com
man

d In
jec

tio
n

Fo
rm

at 
Strin

g B
ug

Buff
er 

Ove
rflo

w

N N Students 

Figure 3: The number of students by vulnerability type
and level of experience.

common one was a logic error that involves an incorrect
program logic. For example, about a half of the logic
errors were due to protocol design flaws. We also saw
a variety of memory corruption vulnerabilities such as
buffer overflow, buffer overread, use-after-free as well as
type-confusion vulnerabilities. Figure 2 summarizes the
result. The result shows that Git-based CTF helps the in-
structors prepare a diverse set of CTF challenges without
the burden of creating contents.

Difficulty Levels. We further analyzed each of the in-
jected vulnerabilities, and found that there is a meaning-
ful correlation between the experience level of students
and the difficulty level of injected vulnerabilities. That
is, students tend to inject vulnerabilities based on their
skill level. Figure 3 presents such a correlation. For
simplicity, if a student had participated in at least one
CTF event, we considered that the student is “experi-
enced”. Note that unexperienced students tend to focus
on logic errors because they are not comfortable about
memory exploitation techniques. Indeed all the cryp-
tographers in the course injected logic errors. However,
students who have advanced knowledge about hacking
techniques injected more complex vulnerabilities. Four
of them injected multiple vulnerabilities, e.g., memory
leaks as well as corruption, that should be chained al-
together in order to successfully bypass defenses, e.g.,
ASLR and DEP, and spawn a remote shell. This naturally
leads us to have a set of CTF challenges of moderately
distributed difficulty levels for the students.

Unintended Vulnerabilities. The students partici-
pated in Git-based CTF found unintended vulnerabilities
as well as intended ones. In total, 14 vulnerabilities and

6



18 functionality bugs were reported during the activity.
It turns out that each team had at least one unintended
vulnerability. The students fixed 12 bugs in total, and in
took about 10 hours on average to fix a bug. The longest
time took for fixing a bug was 24 hours. We note that
unintended vulnerabilities are found mostly by students
who have a strong background on security and hack-
ing. Therefore, we believe it is important to have mixed
groups with different levels of experience. Since Git-
based CTF provides an obvious hint for each intended
challenges, less experienced students in a team may work
on them while more experienced students try to find un-
intended vulnerabilities.

5 Discussion

Diverse Challenges. Recall from §3.1, teams in Git-
based CTF can prepare their applications either by de-
veloping their own, or by importing an existing project.
In our preliminary study, we only performed the former.
We believe by employing the second approach, we may
observe more various challenges for a competition. For
example, each team may have different kinds of appli-
cations, and if some teams prepared a web application,
we could have observed web-based attacks such as SQL
injection, XSS, and CSRF attacks.

Unintended Scoring. Recall from §3.3, Git-based
CTF can automatically identify which intended vulner-
ability is exploited by an attack. However, suppose an
attacker who found an unintended vulnerability crafts an
exploit that can identify the version of the target program,
and outputs a flag only when a specific version of the pro-
gram is detected. For example, suppose a program p has
one intended vulnerability v1, and an attacker crafted an
exploit that prints out a flag only when the target pro-
gram is p1. In this case, the attack is considered as a
valid exploit for v1, and our system will give a point to
the attacker even though she did not exploit v1.

We believe such unintended scoring is not a concern
for two reasons. First, exploiting unintended vulnera-
bilities is more difficult than exploiting intended ones.
Therefore, unintended scoring may be considered as ex-
tra points for the participants who managed to exploit
harder challenges. Second, in Git-based CTF, partici-
pants can have only a fixed amount of score for intended
vulnerabilities, whereas they can get unlimited score for
unintended ones unless they are fixed. Therefore, the
amount of score they can obtain from unintended vul-
nerabilities is much larger than the one from intended
vulnerabilities anyways.

Cheating. Collusion is possible in Git-based CTF as
students may want to share their exploit code. However,
instructors in Git-based CTF can always download all
the exploit code and run a traditional plagiarism detec-
tion tool such as MOSS [26]. This is different from tra-
ditional CTFs where the organizers do not possess any
exploit code. We leave it as future work to combine ex-
isting anti-cheating CTF solutions such as [12].

6 Related Work

There have been numerous attempts to improve CTF-
based education. This section summarize some of them.

Addressing Administration Challenge. CTFd [13]
lowers the cost of configuring and running a CTF by
providing a ready-made CTF web page, which includes
a convenient and customizable administrative panel for
organizers as well as a graphical scoreboard. Although
CTFd reduces the administration costs of running a CTF,
it only supports a jeopardy style CTF. The iCTF frame-
work [32] provides a customizable attack-and-defense-
style CTF framework. Each team in iCTF has its own
Virtual Machine (VM), which must be set up by itself,
and the VMs are connected to each other to form a vir-
tual private network. However, configuring and manag-
ing the network environment requires significant human
effort as well as HW resource. Raj et al. [24] propose a
container-based CTF framework, called InCTF, to reduce
the HW burden. Theoretically, InCTF allows an orga-
nizer to run a CTF event with a single server without hav-
ing a complex network setup. The ShellWePlayAGame
(SWPAG) framework [30] further reduces the configu-
ration costs by providing an easy-to-use website. With
the SWPAG, one can easily create an environment for a
CTF competition in a few clicks. However, because of its
interactive characteristics, teachers need to continuously
monitor and care about whether the competition is run-
ning normally. We note that Git-based CTF inherently
does not require any environmental setup and monitor-
ing effort, and it utilizes free-of-charge services such as
GitHub [2] and BitBucket [3].

Security of CTF Platforms. Since CTF platforms
themselves can be vulnerable, several studies have at-
tempted to mitigate this concern. In BIBIFI [25], the
authors wrote their web application in Haskell in order
to prevent potential vulnerabilities such as memory cor-
ruption, XSS, CSRF, and SQL injection with the help of
strong type system of Haskell. NIZKCTF [20] removes
the flags from the scoring server in order to handle this
challenge. Specifically, teams in NIZKCTF do not sub-
mit a flag, but a non-interactive zero-knowledge proof [6]

7



to the organizer. Each team has its own unique proof that
is public to anyone. Therefore, it is impossible for team
A to impersonate team B to submit a flag on behalf of
B to harm another team C. The idea is specifically use-
ful in attack-and-defense-style CTFs as attacked teams
can have points deducted. We note that Git-based CTF
also supports the same level of security against the im-
personation attack with PGP [19]. On the other hand,
NIZKCTF suffers from the contents creation challenge
as they do not use Git repositories for building and main-
taining software. Our approach can naturally help stu-
dents learn open-source software development process as
well as secure coding practice.

Security of Flags. Burket et al. [8] present an Auto-
matic Program Generator (APG) where CTF platforms
can automatically generate problem instances for a given
problem. This way, participants who observe different
problem instances cannot share their flags. Similarly,
Chothia et al. [12] propose an offline-style CTF compe-
tition where each participant runs a VM locally on their
own machine. Each VM has a unique flag, thus it is un-
likely for participants to share their flags. Although this
is a powerful mitigation against collusion, their approach
does not support hosting attack-and-defense-style CTFs.
Both the ideas are complementary to our approach, and
they can be adapted to Git-based CTF to prevent collu-
sion between students.

Entry Barrier. There are several approaches consid-
ering the entry barrier of CTF competitions. The Pic-
oCTF [11] is a CTF platform that employs a story-
based game making it easier for pre-collegiate students
to get interested in computer security. The KYPO cy-
ber range [33, 34, 35] is also designed to help encourage
novices by dividing a CTF challenge into a sequence of
small phases of different difficulty levels. Burns et al. [9]
collect a set of challenges from 160 CTF competi-
tions, and summarizes what kind of security knowl-
edge is required for beginners to solve the challenges.
Mirkovic et al. [22] discuss several lessons learned by
organizing CCTF which has participants from various
different backgrounds. Backman et al. [4] present a
small-scale attack-and-defense CTF for undergraduate
students. Specifically, it keeps the number of teams to be
as small as possible while making the duration of each
CTF round to be one hour. By giving enough time for
each round, it tries to lower the bar for beginners.

Content Creation Challenge. There are several works
on automatically generating CTF challenges and scenar-
ios. SecGen [27] is a framework that can automatically
build a security scenario by randomly selecting sequence

of modules, which include CTF challenges, and insecure
OS, and so forth. Each module in the scenario corre-
sponds to a sole CTF problem. However, each partic-
ipant can have a unique experience by combining dif-
ferent problems together. Hulin et al. present AutoCTF,
which uses automatically generated vulnerable programs
as CTF challenges. The authors extend the automatic
bug injection tool called LAVA, and use it to inject ex-
ploitable bugs into a program. However, the types and
patterns of the injected vulnerabilities are fixed.

7 Conclusion

In this paper, we present Git-based CTF, a novel attack-
and-defense CTF platform that can be easily hosted as an
in-course activity. We addressed four major challenges
that current CTF platforms have, and showed that Git-
based CTF can effectively handle all the addressed chal-
lenges. The source code for running Git-based CTF is
publicly available at GitHub [28].

8 Acknowledgements

We thank GitHub for providing unlimited free plan for
organizing classes. We also thank HyungSeok Han and
anonymous reviewers for their constructive feedback.
This work was supported by Institute for Information
& communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (No.B0717-
16-0109, Building a Platform for Automated Reverse
Engineering and Vulnerability Detection with Binary
Code Analysis).

References
[1] Git. https://git-scm.com/.

[2] GitHub. https://github.com.

[3] ATLASSIAN. Bitbucket. https://bitbucket.org/.

[4] BACKMAN, N. Facilitating a battle between hackers: Computer
security outside of the classroom. In Proceedings of the ACM
Technical Symposium on Computing Science Education (2016),
pp. 603–608.

[5] BEURAN, R., PHAM, C., TANG, D., ICHI CHINEN, K., TAN,
Y., AND SHINODA, Y. CyTrONE: An integrated cybersecu-
rity training framework. In Proceedings of the International
Conference on Information Systems Security and Privacy (2017),
pp. 157–166.

[6] BLUM, M., FELDMAN, P., AND MICALI, S. Non-interactive
zero-knowledge and its applications. In Proceedings of the An-
nual ACM Symposium on Theory of Computing (1988), pp. 103–
112.

[7] BRATUS, S. What hackers learn that the rest of us don’t: Notes
on hacker curriculum. IEEE Security Privacy 5, 4 (2007), 72–75.

[8] BURKET, J., CHAPMAN, P., BECKER, T., GANAS, C., AND
BRUMLEY, D. Automatic problem generation for capture-the-
flag competitions. In Proceedings of the USENIX Summit on
Gaming, Games, and Gamification in Security Education (2015).

8

https://git-scm.com/
https://github.com
https://bitbucket.org/


[9] BURNS, T. J., RIOS, S. C., JORDAN, T. K., GU, Q., AND UN-
DERWOOD, T. Analysis and exercises for engaging beginners
in online CTF competitions for security education. In Proceed-
ings of the USENIX Workshop on Advances in Security Education
(2017).

[10] CARLISLE, M., CHIARAMONTE, M., AND CASWELL, D. Us-
ing ctfs for an undergraduate cyber education. In Proceedings
of the USENIX Summit on Gaming, Games, and Gamification in
Security Education (2015).

[11] CHAPMAN, P., BURKET, J., AND BRUMLEY, D. PicoCTF: A
game-based computer security competition for high school stu-
dents. In Proceedings of the USENIX Summit on Gaming, Games,
and Gamification in Security Education (2014).

[12] CHOTHIA, T., AND NOVAKOVIC, C. An offline capture the flag-
style virtual machine and an assessment of its value for cyber-
security education. In Proceedings of the USENIX Summit on
Gaming, Games, and Gamification in Security Education (2015).

[13] CHUNG, K. Lowering the barriers to capture the flag administra-
tion and participation. In Proceedings of the USENIX Workshop
on Advances in Security Education (2017).

[14] CONTI, G., BABBITT, T., AND NELSON, J. Hacking competi-
tions and their untapped potential for security education. IEEE
Security Privacy 9, 3 (2011), 56–59.

[15] DAVIS, A., LEEK, T., ZHIVICH, M., GWINNUP, K., AND
LEONARD, W. The fun and future of CTF. In Proceedings of
the USENIX Summit on Gaming, Games, and Gamification in Se-
curity Education (2014).

[16] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., LEEK, T., MAM-
BRETTI, A., ROBERTSON, W., ULRICH, F., AND WHELAN,
R. LAVA: Large-scale automated vulnerability addition. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (2016),
pp. 110–121.

[17] HULIN, P., DAVIS, A., SRIDHAR, R., FASANO, A., GAL-
LAGHER, C., SEDLACEK, A., LEEK, T., AND DOLAN-GAVITT,
B. AutoCTF: Creating diverse pwnables via automated bug in-
jection. In Proceedings of the USENIX Workshop on Offensive
Technologies (2017).

[18] KAIST. IS521: Information security laboratory. https://

kaist-is521.github.io/.

[19] LUCAS, M. W. PGP & GPG: Email for the Practical Paranoid.
No Starch Press, 2006.

[20] MATIAS, P., BARBOSA, P., CARDOSO, T., MARIANO, D., AND
ARANHA, D. NIZKCTF: A non-interactive zero-knowledge cap-
ture the flag platform. CoRR abs/1708.05844 (2017).

[21] MIRKOVIC, J., AND PETERSON, P. A. H. Class capture-the-flag
exercises. In Proceedings of the USENIX Summit on Gaming,
Games, and Gamification in Security Education (2014).

[22] MIRKOVIC, J., TABOR, A., WOO, S., AND PUSEY, P. Engag-
ing novices in cybersecurity competitions: A vision and lessons
learned at ACM Tapia 2015. In Proceedings of the USENIX Sum-
mit on Gaming, Games, and Gamification in Security Education
(2015).

[23] PHAM, C., TANG, D., CHINEN, K.-I., AND BEURAN, R.
CyRIS: A cyber range instantiation system for facilitating secu-
rity training. In Proceedings of the Symposium on Information
and Communication Technology (2016), pp. 251–258.

[24] RAJ, A. S., ALANGOT, B., PRABHU, S., AND ACHUTHAN,
K. Scalable and lightweight CTF infrastructures using appli-
cation containers. In Proceedings of the USENIX Workshop on
Advances in Security Education (2016).

[25] RUEF, A., HICKS, M., PARKER, J., LEVIN, D., MAZUREK,
M. L., AND MARDZIEL, P. Build it, break it, fix it: Contesting
secure development. In Proceedings of the ACM Conference on
Computer and Communications Security (2016), pp. 690–703.

[26] SCHLEIMER, S., WILKERSON, D. S., AND AIKEN, A. Win-
nowing: Local algorithms for document fingerprinting. In Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data (2003), pp. 76–85.

[27] SCHREUDERS, Z. C., SHAW, T., SHAN-A-KHUDA, M.,
RAVICHANDRAN, G., KEIGHLEY, J., AND ORDEAN, M. Se-
curity scenario generator (secgen): A framework for generating
randomly vulnerable rich-scenario VMs for learning computer
security and hosting CTF events. In Proceedings of the USENIX
Workshop on Advances in Security Education (2017).

[28] SOFTSEC KAIST. Git-based CTF. https://github.com/

SoftSec-KAIST/GitCTF.

[29] TAYLOR, C., ARIAS, P., KLOPCHIC, J., MATARAZZO, C., AND
DUBE, E. CTF: State-of-the-art and building the next generation.
In Proceedings of the USENIX Workshop on Advances in Security
Education (2017).

[30] TRICKEL, E., DISPERATI, F., GUSTAFSON, E., KALANTARI,
F., MABEY, M., TIWARI, N., SAFAEI, Y., DOUPÉ, A., AND
VIGNA, G. Shell we play a game? CTF-as-a-service for security
education. In Proceedings of the USENIX Workshop on Advances
in Security Education (2017).

[31] UNIVERSITY OF MARYLAND. Cybersecurity specializa-
tion. https://www.coursera.org/specializations/

cyber-security.

[32] VIGNA, G., BORGOLTE, K., CORBETTA, J., DOUPÉ, A.,
FRATANTONIO, Y., INVERNIZZI, L., KIRAT, D., AND SHOSHI-
TAISHVILI, Y. Ten years of iCTF: The good, the bad, and the
ugly. In Proceedings of the USENIX Summit on Gaming, Games,
and Gamification in Security Education (2014).

[33] VYKOPAL, J., AND BARTÁK, M. On the design of security
games: From frustrating to engaging learning. In Proceedings
of the USENIX Workshop on Advances in Security Education
(2016).

[34] VYKOPAL, J., OŠLEJŠEK, R., ČELEDA, P., VIZVARY, M., AND
TOVARŇÁK, D. KYPO cyber range: Design and use cases. In
Proceedings of the International Conference on Software Tech-
nologies (2017).

[35] VYKOPAL, J., VIZVÁRY, M., OSLEJSEK, R., CELEDA, P., AND
TOVARNAK, D. Lessons learned from complex hands-on defence
exercises in a cyber range. In Proceedings of the IEEE Frontiers
in Education Conference (2017).

[36] ZAGALSKY, A., FELICIANO, J., STOREY, M.-A., ZHAO, Y.,
AND WANG, W. The emergence of github as a collaborative
platform for education. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work & Social Computing
(2015), pp. 1906–1917.

9

https://kaist-is521.github.io/
https://kaist-is521.github.io/
https://github.com/SoftSec-KAIST/GitCTF
https://github.com/SoftSec-KAIST/GitCTF
https://www.coursera.org/specializations/cyber-security
https://www.coursera.org/specializations/cyber-security

	Introduction
	Background
	Git-based CTF
	Preparation Phase
	Injection Phase
	Exercise Phase

	Evaluation
	Discussion
	Related Work
	Conclusion
	Acknowledgements

